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Abstract

This paper presents a new approach for harmonic disturbance rejection using semi-active vibration control. The approach

is illustrated through application to the problem of maximizing the energy dissipated by a semi-active damper under

harmonic excitation. In order to establish a baseline for the evaluation of the performance of the semi-active damper, the

effectiveness of the optimal passive and active cases are first presented. The study then examines the ability of the clipped

optimal control (or clipping control) approach to improve the energy dissipation capacity of the semi-active damper over the

optimal passive damper. An approximate solution to the nonlinear dynamic problem, obtained using the method of

averaging, and a time integration based numerical method indicate that this approach improves the energy dissipated by the

semi-active damper over the optimal passive damper. The approach presented in this paper intends to further ‘‘improve’’, or

‘‘fine tune’’, the control parameters given by the clipped optimal control approach. This is done using an approximated

solution of the problem and an appropriate optimization algorithm. Results clearly indicate that this new approach provides

significant improvement on energy dissipation over the clipped optimal control approach for the semi-active damper.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The damping of mechanical vibrations is critical in many engineering applications and thus, there exist a
vast number of vibration control methods. Vibration control methods can be classified as either being passive,
active or semi-active. The main property of a passive method is that it changes the dynamics of a system in an
appropriate manner which does not vary as a function of time. Examples of common passive methods are
hydraulic dampers, vibration absorbers and viscoelastic damping treatments for flexible structures (for more
examples, see Refs. [1,2]). What can be viewed as the counterpart of passive vibration control is the active
vibration control which essentially makes use of fully active actuators to either inject or dissipate energy in the
system so as to cancel undesirable vibrations. There has been much research on the active control of vibrations
in the past decades. Active control methods include, for example, active piezoelectric engine mounts and
distributed piezoelectric transducers for flexible structures (for a detailed discussion on the active control of
vibrations, see Ref. [3]).
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

Single degree of freedom system

SDOF single degree of freedom
DE energy dissipated per cycle by the damper
o frequency of the harmonic excitation
on natural frequency of the SDOF system
t dimensionless time
z damping ratio of the SDOF system
zp damping ratio provided by the damper
zsa damping ratio provided by the semi-

active damper
ẑp optimal passive damping ratio of the

damper
zmax maximal damping ratio provided by the

semi-active damper
g normalized maximal damping ratio pro-

vided by the semi-active damper
c viscous damping of the SDOF system
cp viscous damping provided by the damper
csa viscous damping provided by the semi-

active damper
cmax maximal viscous damping provided by

the semi-active damper
F ex amplitude of the harmonic excitation
k stiffness of the SDOF system
m mass of the SDOF system
r frequency ratio of the excitation
t time
X amplitude of the steady-state displace-

ment of the SDOF system
x displacement of the SDOF system
X ex amplitude of the normalized harmonic

excitation

Control system

POC periodic optimal control
CPOC clipped periodic optimal control

ICPOC improved clipped periodic optimal control
b phase of the normalized requested effort
b̂ phase of the normalized requested effort

for the POC and the CPOC
~b phase of the normalized requested effort

for the ICPOC
J cost function
u requested effort
û requested effort for the POC and the

CPOC
~u requested effort for the ICPOC
X u amplitude of the normalized requested

effort
X̂ u amplitude of the normalized requested

effort for the POC and the CPOC
~X u amplitude of the normalized requested

effort for the ICPOC
xu normalized requested effort
x̂u normalized requested effort for the POC

and the CPOC
~xu normalized requested effort for the ICPOC

Averaging technique

f time base used for integration in the
method of averaging

c phase of the averaged motion
y dimensionless time at which the re-

quested effort gets within the damper’s
capacity

a amplitude of the averaged motion
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A relatively new method, which has also been a subject of research in recent years (see, for example, Refs.
[4–12]), is called the semi-active control of vibrations and can be viewed as being halfway between passive and
active control. Semi-active control includes methods for which energy is used to change the damping or stiffness
of a device appended to a mechanical system. Examples of such methods are: variable orifice hydraulic dampers
[13], magneto-rheological vibration absorbers [14] and shunted piezoelectric transducers for flexible structures
[15]. Semi-active control is interesting in a number of applications essentially because it can deliver better
performance than passive control with a fraction of the power consumption, and thus cost, associated with active
control. It is used in a wide variety of applications which includes vibration isolation of equipment [4,5], shock
and vibration absorption in transportation [6–8], vibration mitigation in civil engineering [9–11] and many others.
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A large part of the research on semi-active control has been devoted to transient and broadband excitation
since practical implementations of semi-active control methods are mainly focused around seismic isolation
and suspension systems for transportation. Several approaches exist in the literature to synthesize an effective
control logic for both kinds of excitation. These approaches mainly originate from the adaptation of active
control laws, such as clipped-LQR control [16,17], from nonlinear control approaches, such as sliding mode
control [18] and Lyapunov’s direct method [12] or simply from physical interpretations (see skyhook and
groundhook control in Ref. [11]). In contrast, there has been little effort to exploit harmonic disturbance
rejection using semi-active control even if many vibration control problems are harmonic in nature [4].
Moreover, the effectiveness of the control approaches proposed for transient and broadband excitation have
limited performance on harmonic disturbance rejection since they mainly originate from either infinite time
horizon optimization (as for LQR approaches) or instantaneous time horizon optimization (as for sliding
mode control and Lyapunov’s direct method). To really design a control law focused on periodic disturbance
rejection, a periodic time horizon optimization has to be considered [19].

As one of the few papers specifically oriented toward harmonic disturbance rejection, Anusonti-Inthra and
Gandhi [4] proposed an interesting approach for the semi-active isolation problem using a frequency domain
control algorithm at twice the frequency of the excitation. In order to ensure the compatibility of their control
algorithm with their damper, they implemented a ‘‘scaled down’’ version of their active optimal control law.
The process of ‘‘scaling down’’ the control can be viewed as to apply a penalty on the requested effort so that it
is always lower or equal to what the damper can provide. Although their system is clearly effective, the effect
of ‘‘scaling down’’ the active optimal control is not thoroughly discussed. Liu et al. [20] have also studied the
semi-active harmonic isolation problem by comparing four different already established physical
interpretation based semi-active control laws. A good example of a physical interpretation based control law

is the ‘‘skyhook’’ control, where the control law intends to emulate a viscous damper connected between the
sky and the mass. Although effective, control laws arising from physical interpretations do not take a periodic
time horizon optimization into account. Also, experimental work has been done by Buaka et al. [21] on a semi-
active friction device controlled by a Bang–Bang control based on Lyapunov’s direct method. They showed
that with proper control parameters and phase-shift compensation, it was possible to improve the energy
dissipated by their semi-active damper over a strictly passive damper under harmonic excitation. However,
Lyapunov’s direct method is based on an instantaneous time horizon optimization and thus, it is not
specifically intended for harmonic disturbance rejection. Pinkaew and Fujino [17] studied the effectiveness of a
semi-active tuned mass damper under harmonic excitation controlled by a clipped-LQR control law. Again,
the approach is not specifically oriented toward harmonic disturbance rejection since the control is based on
an infinite time horizon optimization. However, they showed that clipping an LQR control law essentially
leads to the minimization of the instantaneous increasing cost from the cost function of the corresponding
optimal active system. This means that by clipping an LQR control, one loose the infinite time horizon
optimality.

A review of the literature for semi-active harmonic disturbance rejection tends to indicate that semi-active
control can achieve better results than passive control in practically every situation. But most of the
control laws used are either ‘‘clipped’’ or ‘‘scaled down’’ versions of active optimal control laws or control laws
arising from nonlinear approaches or physical interpretations that do not take the periodicity of the
phenomenon into account. Moreover, for the control laws that do take the periodicity of the phenomenon into
account [4], further investigation is required on the effect of clipping (or even scaling down) the active optimal
control to respect the inherent passivity (no energy injected) and the modulation capacity of the semi-active
damper.

2. Objective and methodology

This paper proposes a new approach allowing to obtain an effective control law for harmonic disturbance
rejection. In order to illustrate the approach, it focuses on the following problem: given the semi-actively
damped single degree of freedom (SDOF) system in Fig. 1(b), derive a semi-active control law in order to
maximize the energy dissipated per cycle by the semi-active damper. Recognizing the difficulty of finding the
true ‘‘semi-active optimal control law’’ for this nonlinear optimization problem, a simple approach is
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proposed, based on an approximated solution to the nonlinear dynamic problem, in order to derive an
appropriate control law.

It is important to understand that the idea of maximizing the energy dissipated by the semi-active damper is
not the same as to minimize the response of the system’s mass, in which case it would be more effective to
reduce the work done on the mass in the first place. The results presented in this paper are thus mostly of
theoretical interest. However, on a practical point of view, the method could be useful for researchers
interested in the field of energy harvesting (see, for example, Ref. [22]).

The clipped optimal control (or clipping control) approach [11] is used as a starting point. This method
essentially involves two steps. The first step is to determine the fully active control law that optimizes the
chosen cost function. For the problem considered in this paper, this has been done by Kasturi and Dupont [19]
and the result will be briefly recalled in Section 3 along with the optimal passive case. The second step is then
to design the clipping controller that will best reproduce the active optimal effort, while respecting the inherent
passivity (no energy injected) and the modulation capacity of the semi-active damper. This second step yields
the ‘‘clipped optimal control law’’ and will be the subject of Section 4. The originality of this paper is to
propose to add a third step to this approach, which can be viewed as ‘‘improving’’ or ‘‘fine tuning’’ the clipped
optimal control law. The improvement of the clipped optimal control law is done using an approximate
solution to the nonlinear dynamic problem and an appropriate optimization algorithm, which will be
discussed in Section 5. It will be shown that this third step leads to considerable improvement over clipped
optimal control laws used for semi-active harmonic disturbance rejection.

3. Passive and active damping optimization

This section aims at establishing the optimal energy dissipated for both a passive viscous damper and a fully
active damper under harmonic excitation. This will be used as a baseline to assess the performance of the semi-
active damper against its passive and active counterparts. Note that the active control law will also serve as the
basis for the design of the control laws presented in Sections 4 and 5.

3.1. Passive viscous damping optimization

Consider the damped SDOF system with an added viscous damping provided by a passive damper as shown
in Fig. 1(a). It can be logically inferred that for a value of added passive damping of zero, no energy will be
dissipated and that for a value of added passive damping that tends toward infinity, no energy will be
dissipated either since the response of the system will be infinitely small. Thus, we can assume that there is an
optimal value of damping that will maximize energy dissipation which lies between zero and infinity. The
purpose of this section is to compute that optimal value. The equation of motion of the system under
Fexcos(ωt)

m

k

x(t)

u(t)
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m
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Fig. 1. SDOF system with an added: (a) passive viscous damper, (b) semi-active viscous damper and (c) active damper.
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harmonic excitation is

m €xþ ðcþ cpÞ _xþ kx ¼ F ex cosot, (1)

which can be rewritten in dimensionless form such as

€xþ 2ðzþ zpÞon _xþ o2
nx ¼ o2

nX ex cosot, (2)

where on ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
, z ¼ c=ð2monÞ, zp ¼ cp=ð2monÞ and X ex ¼ F ex=k. It can be shown that the amplitude of the

motion under steady state is [1]

X ¼
X exffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� r2Þ2 þ ð2ðzþ zpÞrÞ
2

q , (3)

where r ¼ o=on. The energy dissipated by the damper is found by integrating the damping force � distance

product over one cycle so that

DE ¼ 2pkrzpX 2. (4)

The added passive damping that maximizes Eq. (4) is solution of dDE=dzp ¼ 0 since d2DE=dz2po0.
Extracting only the positive root, this yields the optimal added damping ratio:

ẑp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2Þ2 þ ð2zrÞ2

q
2r

. (5)

Using Eqs. (3)–(5), the closed-form expression of the energy dissipated per cycle, under steady-state regime,
by the optimal added viscous damping for harmonic excitation is obtained:

DE ¼
pkX 2

ex

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2Þ2 þ ð2zrÞ2

q
þ 2rz

� � . (6)

Discussion on this result is left to Section 3.3.

3.2. Active damping optimization

The system shown in Fig. 1(c), where the damping is provided by an active effort, u, is now considered. The
dimensionless equation of motion of this system is

€xþ 2zon _xþ o2
nðxþ xuÞ ¼ o2

nX ex cosot, (7)

where xu ¼ u=k. As opposed to the static optimization problem of the preceding section, optimizing the energy
dissipated by the control effort is in this case a dynamic optimization problem in which the cost function to be
minimized is

JðuÞ ¼

Z t0þ2p=o

t0

�u _xdt. (8)

With regards to linear optimal control theory, this problem is called a singular problem since the derivative of
the Hamiltonian to the control effort, qH=qu, does not yield an implicit expression of u. There is no prescribed
method to solve this kind of problem and thus specific solutions are obtained for specific cases. Kasturi and
Dupont [19] were able to give a closed-form solution to this problem for the case of any periodic excitation
using a standard variational approach. For the case of an harmonic excitation as in Fig. 1(c), with t0 ¼ 0, the
normalized active optimal requested effort and the energy dissipated per cycle at this optimal effort become

x̂uðtÞ ¼ X̂ u cosðot� b̂Þ, (9)

DE ¼
pkX 2

ex

8zr
, (10)



ARTICLE IN PRESS
M. Couillard et al. / Journal of Sound and Vibration 318 (2008) 737–756742
where the amplitude and phase of x̂u are, respectively,

X̂ u ¼
X ex

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

r2 � 1

2zr

� �2
s

, (11)

b̂ ¼ tan�1
r2 � 1

2zr

� �
. (12)

This is an open-loop control that will be referred to as the ‘‘periodic optimal control’’ (POC). For a detailed
discussion on the POC, the reader is referred to the paper by Kasturi and Dupont [19].

3.3. Optimal passive damping versus optimal active damping

From the comparison of optimal passive damping with optimal active damping, two observations can be made:
(1)
Fig.

dam

regio
The energy dissipated per cycle at optimal by the active and passive dampers (see Eqs. (6) and (10)) is
proportional to kX 2

ex. In order to provide a dimensionless result, the energy dissipated per cycle will be
expressed as the normalized energy dissipated per cycle (¼ DE=ðkX 2

exÞ) in the following.

(2)
 For r ¼ 1, the optimal energy dissipated per cycle by the active and passive dampers (see Eqs. (6) and (10))

become equal so that there is no gain to be made by using an active damping force over a passive one. This
can be explained by the fact that, at this point, b̂ vanishes so x̂u has a phase opposite to the one of the
excitation (remember from Fig. 1(c) that they act in opposite direction) and thus, this is equivalent to
passive viscous damping.
To better illustrate the results presented in this section, a plot of the regions delimited by the passive and
active normalized energy dissipated per cycle at optimal is presented in Fig. 2 for z ¼ 5:63 percent. The SDOF
parameters used throughout this paper are based on the semi-active device presented by Buaka [23]
(m ¼ 0:228 kg, z ¼ 5:63 percent, k ¼ 17 500N=m) with F ex ¼ 2N. Fig. 2 allows to distinguish three distinct
regions of performance, which are:
(1)
 The region with a performance inferior to an optimal passive damper. If the performance of the semi-
active damper falls in this region, this means the control law offers no advantages compared to a passive
damper.
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2. Possible regions of operation for the semi-active viscous damper: ð Þ region with a performance inferior to an optimal passive

per; ð Þ region with a performance superior to an optimal passive damper and inferior to an optimal active damper; ð Þ

n with a performance superior to an optimal active damper.
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(2)
 The region with a performance superior to an optimal passive damper and inferior to an optimal active
damper. This is the expected region of operation of the semi-active damper.
(3)
 The region with a performance superior to an optimal active damper. It is expected that this region is
unattainable since theoretically, no semi-active control can achieve better performance than an optimal
active control when considering the same cost function.
4. Clipped periodic optimal control

The purpose of this section is to evaluate the capacity of the clipped optimal control (or clipping control)
approach [11] to improve, over the optimal passive case, the energy dissipated per cycle by a semi-active
damper under harmonic excitation. Therefore, this section is focused on the design of a clipped version of the
POC presented in Section 3.2, which will be called the ‘‘clipped periodic optimal control’’ (CPOC) in the
following.

4.1. Design of the CPOC

Before proceeding to the design of the CPOC, a new parameter is introduced that will allow to do a fair
comparison between the semi-active damper and the passive damper. This new parameter, which will be called
the normalized maximal allowed damping, noted g, is defined as being the ratio of the maximal allowed
damping ratio of the semi-active damper, zmax, to the optimal damping ratio of the passive damper, ẑp, as
expressed by Eq. (5), such as

g ¼
zmax

ẑp

. (13)

This essentially means that, by setting g, we will allow zmax to vary with the frequency ratio, so it is always in

the same proportion with respect to ẑp.

For the design of the CPOC, consider the case of the SDOF system damped by a semi-active viscous damper
as shown in Fig. 1(b). The difference between Fig. 1(a) and (b) is that the added damping to the system now
−3.5
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0
−0.04

0

0.04

Fig. 3. Time history of the CPOC for r ¼ 0:7 and g ¼ 2 (ti indicates a change of mode of operation).
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becomes a function of time and it can only lie in the interval 0pzsaðtÞpzmax. The idea behind the control
approach of the CPOC is that it will try to reproduce x̂u, in an instantaneous sense, by modulating zsa. Since
the semi-active damper cannot inject energy into the system and has a limited maximal effort, it can be
logically inferred that the CPOC will yield a control law that will have three distinct ‘‘modes’’ of operation. To
better illustrate this affirmation, time based simulations of the CPOC for g ¼ 2 are shown for r ¼ 0:7 in Fig. 3,
0
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Fig. 4. Time history of the CPOC for r ¼ 0:9 and g ¼ 2 (ti indicates a change of mode of operation).
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Fig. 5. Time history of the CPOC for r ¼ 1:1 and g ¼ 2 (ti indicates a change of mode of operation).



ARTICLE IN PRESS

−3.5

0

3.5

0

110

0
−0.04

0

0.04

Fig. 6. Time history of the CPOC for r ¼ 1:5 and g ¼ 2 (ti indicates a change of mode of operation).
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for r ¼ 0:9 in Fig. 4, for r ¼ 1:1 in Fig. 5 and for r ¼ 1:5 in Fig. 6. The three distinct ‘‘modes’’ of operation of
the semi-active damper can be defined as follows:
(1)
 When û opposes the velocity and is within the effort the damper can provide, csa is adjusted so that
csa _x ¼ û or, in dimensionless form, zsa is adjusted so that zsa _x ¼ onx̂u=2. Examples of such cases are the
time intervals t3ptpt4 in Figs. 3–6.
(2)
 When û opposes the velocity but is greater than the effort the damper can provide, the damping is held at
cmax, or, in dimensionless form, zsa ¼ zmax. Examples of such cases are the time interval t2ptot3 in Figs. 3
and 4 and the time interval t1otpt2 in Figs. 5 and 6.
(3)
 When û is in the same direction as the motion, so that it would inject energy into the system, the semi-
active damper is set at the lowest amount of damping it can produce, which, for simplicity, will be
considered here to be csa ¼ 0 (or zsa ¼ 0). Examples of such cases are the time interval t1otot2 in Figs. 3
and 4 and the time interval t2otot3 in Figs. 5 and 6.
Therefore, the preceding control law can be represented, in its dimensionless form, by the following
equation:

zsa ¼

onx̂u

2 _x
if x̂u _xX0 and

onx̂u

2 _x
pzmax;

zmax if x̂u _xX0 and
onx̂u

2 _x
4zmax;

0 otherwise:

8>>>><
>>>>:

(14)
4.2. Approximate steady-state solution using the method of averaging

This section aims at establishing an approximate solution to the nonlinear dynamic problem of the semi-
actively damped SDOF system controlled with the CPOC. This is done in order to obtain some analytical
insights to the problem and also to validate the results from time based simulations. The approximate solution
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to the CPOC problem is obtained using the method of averaging. As illustrated by Shen et al. [6], this method
can be applied to semi-active vibration control problems in order to obtain an approximated frequency
response function of the system.

The first step in the averaging method analysis is to write the equation of motion of the system in its
dimensionless form, introducing dimensionless time t ¼ ot:

r2
d2x

dt2
þ 2ðzþ zsaÞr

dx

dt
þ x ¼ X ex cos t. (15)

Applying the first-order method of averaging, we seek a solution in the form

x ¼ aðtÞ cosfðtÞ, (16)

dx

dt
¼ �aðtÞ sinfðtÞ, (17)

where fðtÞ ¼ tþ cðtÞ. Note that the amplitude and phase of the motion, a and c, are considered to be slowly
varying functions of t. Differentiating Eq. (16) with respect to r and requiring Eq. (17) to hold, we obtain

da

dt
cosf� a

dc
dt

sinf ¼ 0. (18)

Differentiating Eq. (17) with respect to t and substituting the results in Eq. (15) yields

a 1� r2 � r2
dc
dt

� �
cosf� r2

da

dt
þ 2ðzþ zsaÞar

� �
sinf ¼ X ex cosðf� cÞ: (19)

Eqs. (18) and (19) can then be solved for da=dt and dc=dt so that

2r2
da

dt
¼ að1� r2Þ sin 2f� 4ðzþ zsaÞar sin 2f� 2X ex sinf cosðf� cÞ; (20)

2ar2
dc
dt
¼ 2að1� r2Þ cos2f� 2ðzþ zsaÞar sin 2f� 2X ex cosf cosðf� cÞ: (21)

The next step of the method is to obtain an approximate solution of the steady-state response of the system by
averaging da=dt and dc=dt over one period of time 0pfp2p such as

2r2
da

dt
¼

1

2p

Z 2p

0

½að1� r2Þ sin 2f� 4ðzþ zsaÞar sin2 f� 2X ex sinf cosðf� cÞ�df; (22)

2ar2
dc
dt
¼

1

2p

Z 2p

0

½ð2a� 2ar2 � 2X ex coscÞ cos2 f� ð2ðzþ zsaÞarþ X ex sincÞ sin 2f�df: (23)

Note that these are partial integrations in the sense that a and c are held fixed during the integration process.
This means that the response of the system is assumed to be harmonic. Therefore, in order to solve the
integrals of Eqs. (22) and (23), the control law of Eq. (14) can be rewritten in terms of time such as

for rp1:

zsa ¼

zmax; 0pfoy; ppfoyþ p;
onx̂u

2 _x
; ypfpb̂þ cþ p=2; yþ ppfpb̂þ cþ 3p=2;

0; b̂þ cþ p=2ofop; b̂þ cþ 3p=2ofo2p:

8>>><
>>>:

(24a)

for r41:

zsa ¼

0; 0ofob̂þ cþ p=2; pofob̂þ cþ 3p=2;
onx̂u

2 _x
; b̂þ cþ p=2pfpy; b̂þ cþ 3p=2; pfpyþ p;

zmax; yofpp; yþ pofp2p;

8>>><
>>>:

(24b)
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where y is the dimensionless time at which the requested effort gets within the damper’s capacity, such as

y ¼ �tan�1
X̂ u cosðb̂þ fÞ

X̂ u sinðb̂þ fÞ þ 2zmaxar

 !
. (25)

Note that Eq. (24) implies that for rp1, we will have ap0 and 0pco2p and for r41, we will have aX0 and
�2pocp0. The next step in the method of averaging is then to solve Eqs. (22) and (23) using the control logic
of Eq. (24) to obtain the averaged version of da=dt and dc=dt. This yields

for rp1:

da

dt
¼

1

4pr2
ð2zmaxar sin 2y� X̂ uð2y� 2b̂� 2c� pÞ sinðb̂þ cÞ � 4arðzmaxyþ zpÞ

þ X̂ u cosð2y� b̂� cÞ þ X̂ u cosðb̂þ cÞ � 2pX ex sincÞ, (26a)

for r41:

da

dt
¼

1

4pr2
ð�2zmaxar sin 2yþ X̂ uð2y� 2b̂� 2c� pÞ sinðb̂þ cÞ

þ 4arðzmaxy� zmaxp� zpÞ � X̂ u cosð2y� b̂� cÞ � X̂ u cosðb̂þ cÞ � 2pX ex sincÞ, (26b)

and for rp1:

dc
dt
¼

1

4par2
ð�X̂ u sinð2y� b̂� cÞ � X̂ uð2y� 2b̂� 2c� pÞ cosðb̂þ cÞ

� X̂ u sinðb̂þ cÞ � 4arzmax sin
2 yþ 2pað1� r2Þ � 2pX ex coscÞ, (27a)

for r41:

dc
dt
¼

1

4par2
ðX̂ u sin sinð2y� b̂� cÞ þ X̂ uð2b̂� 2c� pÞ cosðb̂þ cÞ

þ X̂ u sinðb̂þ cÞ þ 4arzmax sin
2 yþ 2pað1� r2Þ � 2pX ex coscÞ. (27b)

Assuming that, at steady state, the amplitude a and the phase c are constant so that da=dt ¼ 0 and
dc=dt ¼ 0, the final step of the averaging method is to solve Eqs. (26) and (27) for a and c. For this particular
case, the resulting equations are nonlinear and getting an explicit expression of a and c is not possible. Thus,
we must rely on a numerical method which can be viewed as an optimization routine that generates an
estimate of a and c to minimize the cost function of Eq. (28). The optimization routine used in this paper is
based on the Nelder–Mead simplex (direct search) method [24].

Jða;cÞ ¼
da

dt

� �2

þ
dc
dt

� �2
" #

. (28)

Again, for rp1, it is expected that ap0 and 0pco2p and for r41, it is expected that aX0 and �2pocp0.
Using a and c as given by the preceding optimization routine, the energy dissipated per cycle can be
determined by integrating the damping force � distance product over one cycle. This yields

for rp1:

DE ¼ ka2rzmaxð2y� sin 2yÞ þ kaX̂ uðy� b̂� cÞ sinðb̂þ cÞ

� 1
2

kaX̂ uðp sinðb̂þ cÞ þ cosðb̂þ cÞ þ cosð2y� c� b̂ÞÞ, (29a)

for r41:

DE ¼ � ka2rzmaxð2y� 2p� sin 2yÞ � kaX̂ uðy� b̂� cÞ sinðb̂þ cÞ

þ 1
2

kaX̂ uðp sinðb̂þ cÞ þ cosðb̂þ cÞ þ cosð2y� c� b̂ÞÞ, (29b)



ARTICLE IN PRESS
M. Couillard et al. / Journal of Sound and Vibration 318 (2008) 737–756748
4.3. Numerical analysis and discussion on the CPOC

This section intends to numerically evaluate the performance of the CPOC using two different methods.
The first method is based on the averaged solution of the previous section. The main steps involved in this
method are:
(1)
Fig.

meth

ð

define system parameters: m, k, c, cmax, o and F ex;

(2)
 determine the averaged steady-state motion amplitude and phase using an optimization routine on

Eqs. (26) and (27) with the cost function of Eq. (28) to be minimized;

(3)
 evaluate the energy dissipated per cycle using Eq. (29a).
The second method used for the analysis is a time integration based method. Although a time integration
based method is quite inefficient in terms of computation time (mainly because it needs to integrate time until
steady state is obtained), it is believed that it will give an excellent estimate of the energy dissipated per cycle.
The main steps involved in the time integration based method that will be used in the following can be
described as follows:
(1)
 define system parameters: m, k, c, cmax, o and F ex;

(2)
 numerically integrate the equation of motion over 100 cycles in order to obtain a steady-state solution

(considering a damping ratio of z ¼ 5:63 percent, 100 cycles is considered to be sufficient);

(3)
 determine the energy dissipated by the semi-active damper by numerically integrating the damping force �

distance product over one cycle.
Fig. 7 illustrates the normalized energy dissipated per cycle in terms of the frequency ratio obtained from the
time integration based method and the averaged solution for g ¼ 1:25 and 2. The plot clearly shows that the
CPOC can improve the energy dissipated per cycle by a semi-active damper compared to an optimal passive
damper and this, over the entire span of frequency ratio considered. This is in agreement with the literature
where, generally speaking, clipped optimal controls have been shown to provide increased performance over
strictly passive systems (see, for example, Refs. [16,17,25]). Moreover, if the maximal allowed damping
provided by the semi-active damper is increased, by increasing g from 1:25 to 2, the energy dissipated per cycle
is also increased, as intuition would suggest. It is also expected that as z is reduced, the potential for energy
dissipation will be increased as it is the case for the passive and active dampers.
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7. Normalized energy dissipated per cycle in terms of the frequency ratio obtained for the CPOC from the time integration based
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Þ averaged solution for g ¼ 2.
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Another interesting feature of the CPOC, as it can be seen in Figs. 3–6, is that it yields a control effort, csa _x,
that is periodic at twice the frequency of excitation. This control is therefore coherent with the paper presented
by Anusonti-Inthra and Gandhi [4] where they designed a frequency domain controller at twice the frequency
of the excitation.

As for the ability of the averaged solution to evaluate the energy dissipated per cycle by the CPOC under
steady state compared to the time integration based method, we can see that in the vicinity of r ¼ 1, the
agreement between both methods is excellent. However, the agreement tends to deteriorate as the frequency
ratio gets away from r ¼ 1 and as g is increased. This is essentially because the motion gets distorted and the
harmonic motion assumption becomes less acceptable. However, the agreement between both methods is
considered satisfactory.

5. Improved clipped periodic optimal control

Although the CPOC presented in Section 4 was shown to be effective, it must be emphasized that
clipping an active optimal control law does not guarantee ‘‘semi-active optimality’’ in any way. For the
problem considered here, this means that there is no guarantee that clipping an harmonic requested
effort is ‘‘semi-active optimal’’ and even less that X̂ u and b̂ are the harmonic requested effort
optimal parameters. Because of the nonlinear nature of the problem and therefore the inherent
difficulty of finding the true ‘‘semi-active optimal’’ control, this paper proposes to rather ‘‘improve’’
or ‘‘fine tune’’ the solution given by the clipped optimal control approach. In that sense, the same
control law as with the CPOC will be used but with a new normalized requested effort, noted ~xu, that will yield
larger energy dissipation than x̂u. This new control will be called the ‘‘improved clipped periodic optimal
control’’ (ICPOC). It will be shown that the ICPOC can give considerable gains on energy dissipation
over the CPOC.

5.1. Design of the ICPOC

To better understand the objectives of this section, we first rewrite Eq. (9) using complex exponential
notation so that

x̂uðtÞ ¼
X ex

2
� jðr2 � 1Þ

X ex

4zr

� �
ejot. (30)

Eq. (30) shows that the POC indicates an optimal point in the complex plane. To illustrate this, Figs. 8 and 9
present contour plots of the normalized energy dissipated per cycle in terms of the real and imaginary parts of
xu, for both the active and the semi-active cases. These plots were obtained using the time integration based
procedure presented in Section 4.3 and discretizing the complex plane in a relatively fine mesh (61� 61
points). Fig. 8 clearly shows that, for the active case, the location given by x̂u is on an optimal point in the
complex plane. On the other hand, Fig. 9 shows that the location given by x̂u is clearly not at an optimal point
in the complex plane for the semi-active case.

The purpose of this section will be to find that optimal point, given by ~xu, assuming that it exists.
It is also interesting to point out that the plot for the active damper presented in Fig. 8 allows negative

values for energy dissipation, which is not the case for the plot for the semi-active damper presented in Fig. 9.
This is coherent with the fact that the active damper can inject energy into the system while this is impossible
for the semi-active damper. Note, however, that the optimal point of Fig. 8 does represent a positive value for
energy dissipation.

5.2. Assessment of the averaged solution for the ICPOC

Section 4.2 presented an averaged solution for the CPOC, in which case x̂u represented the requested effort
to the semi-active damper. Since we are using the same control law as with the CPOC but with a different
requested effort, one might wonder if it would be possible to use the same averaged solution while varying xu

in order to find ~xu. (Note: in that case, ~xu will represent the optimal form of xu for the averaged solution but
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Fig. 8. Contour plot of the normalized energy dissipated per cycle in terms of the real and imaginary parts of xu for active damping at

r ¼ 0:9, obtained using the time integration based method.
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Fig. 9. Contour plot of the normalized energy dissipated per cycle in terms of the real and imaginary parts of xu for semi-active damping

at r ¼ 0:9 and g ¼ 2, obtained using the time integration based method.
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not the ‘‘true’’ optimal form that would require an exact solution.) To answer this question, a contour plot of
the normalized energy dissipated per cycle in terms of the real and imaginary parts of xu was computed using
the averaged solution and is shown in Fig. 10. Though it does not allow to compute the normalized energy
dissipated per cycle for the entire plane, essentially because Eq. (24) assumes a timing between each harmonic
signals, the averaged solution does however enclose the region where, by looking at the figure, one would
expect the optimal point to be located. Moreover, for the region where the solution is valid, the plot is very
similar to Fig. 9, which was obtained using the time integration procedure. Therefore, this means that, a priori,
the averaged solution can be used to find ~xu.
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5.3. Optimization algorithm for the ICPOC

The idea behind the optimization algorithm of the ICPOC is shown in Fig. 11. The overall optimization
criterion to be minimized for the algorithm is

JðX u;bÞ ¼ �DE, (31)

where DE is given by Eq. (29a), but now considering that X u and b are allowed to vary so that they are no
longer fixed at X̂ u and b̂. The algorithm essentially involves two imbricated optimization routines. The steps of
the algorithm are as follows:
(1)
 define system parameters: m, k, c, cmax, o and F ex;

(2)
 set boundaries on parameters a, c, X u and b;

(3)
 give an estimate of X u and b (first optimization routine);

(4)
 give an estimate of a and c (second optimization routine);

(5)
 do a and c minimize Eq. (28)? If not, go back to step (4);

(6)
 do X u and b minimize Eq. (31)? If not, go back to step (3);

(7)
 end.
The end result of this algorithm will be to give the energy dissipated per cycle by the ICPOC under steady state
with the corresponding values of ~X u and ~b.

5.4. Numerical analysis and discussion on the ICPOC

Fig. 12 presents the normalized energy dissipated per cycle in terms of the frequency ratio for the ICPOC
and the corresponding results for the CPOC for g ¼ 2. The first observation that can be made from Fig. 12 is
that the ICPOC provides a better (or equal for r ¼ 1) energy dissipation than the CPOC over the entire span of
frequency ratio considered. For the system parameters considered, the relative gain to be made on the energy
dissipated over the CPOC is a function of the frequency ratio and it can go as high as 35 percent for r ¼ 0:7
and 1.5. This gain will be a function of z and g, where a lower value of z and/or a higher value of g will allow
greater energy dissipation.
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Fig. 11. Optimization algorithm, based on the averaged solution, to determine the energy dissipated per cycle and the improved active

effort of the ICPOC.
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Figs. 13 and 14 allow to compare the amplitude, ~X u, and phase, ~b, of the ICPOC with the
amplitude, X̂ u, and phase, b̂, of the CPOC. We can observe that the amplitude of the ICPOC is
different from what is prescribed by the CPOC. One particular aspect of the ICPOC, that can be
seen in Fig. 13, is that when r is out of a certain interval, in this case 0:96prp1:04 for g ¼ 2, the ICPOC tends
to take the form of a Bang–Bang (or On–Off) control since ~X u gets very large in comparison to the maximum
effort the damper can provide. Also, one can see that when g is reduced, this phenomenon tends to be more
important. This is coherent with the fact that the research on semi-active vibration control has given a lot of
attention to the Bang–Bang variety of control approaches [20]. As for the phase plots in Fig. 14, they tend to
be similar in shape but the ICPOC prescribes absolute phase values that are larger than the CPOC. A possible
explanation to this phenomenon could come from the fact that the ICPOC has only a limited capacity of
introducing a ‘‘spring-like’’ or ‘‘mass-like’’ force component to modify the system’s dynamics, as opposed to
the full capacity of the active damper. Thus, the phase would tend to be larger in order to compensate for this
incapacity.

Another interesting aspect of the ICPOC is that ~X u and ~b, as illustrated in Figs. 13 and 14, are functions of
g. Therefore, an important difference between the CPOC and the ICPOC is that the ICPOC takes the capacity
of the semi-active damper into account in the design of the control.
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Fig. 12. Normalized energy dissipated per cycle in terms of the frequency ratio obtained from the time integration based method and from

the averaged solution for the CPOC and the ICPOC for g ¼ 2: ð Þ averaged solution for the CPOC; ð&Þ time integration for the

CPOC; ð Þ averaged solution for the ICPOC; ðnÞ time integration for the ICPOC.
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Fig. 13. Amplitude of the normalized requested effort for the CPOC and the ICPOC: ð Þ CPOC X̂ u; ð Þ ICPOC ~X u for g ¼ 1:25;
ð Þ ICPOC ~X u for g ¼ 2.
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As for the agreement between the approximate solution and the time based simulations results, the results
follow the same trend as in Section 4.3 where the agreement between both methods is excellent in the vicinity
of r ¼ 1, but tends to deteriorate as the frequency ratio gets away from r ¼ 1.

In order to verify that the ICPOC could be reduced to a Bang–Bang control when r is out of the interval
0:96prp1:04 for g ¼ 2, the Bang–Bang ICPOC control is implemented and can be represented by the
following equation:

zsa ¼
zmax if ~xu _xX0;

0 otherwise:

�
(32)

The time integration based simulation results for both the ICPOC and the Bang–Bang ICPOC are presented in
Fig. 15 for g ¼ 2. One can then clearly see that for values of r out of the interval 0:96prp1:04, both controls
yield almost identical performance. Indeed, one could probably further improve the performance of the
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Bang–Bang ICPOC control in the 0:96prp1:04 range by computing the optimal phase of xu for this
particular control, but this is considered to be out of the scope of this paper. This phenomenon opens-up
interesting perspectives on future research.

6. Summary and concluding remarks

The purpose of the present paper is to present a new approach to design an effective control law for semi-
active harmonic disturbance rejection. To illustrate the approach, the problem of maximizing the energy
dissipated per cycle by a semi-actively damped SDOF system was treated. In order to establish a base of
comparison between the semi-active damper and its passive and active counterparts, the analytical results for
the energy dissipated per cycle at optimal by a passive damper and an active damper (obtained by Kasturi and
Dupont [19]) are first presented.

As a starting point for the design of the new control law, the clipped optimal control approach was used,
which essentially involves designing a control law that allows the semi-active damper to generate an effort that
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follows, ‘‘at best’’, the requested effort of the active optimal case. For the problem considered in this paper, the
approach yields a control law that was called the ‘‘clipped periodic optimal control’’ (or CPOC). In order to
determine the ability of the CPOC to improve the energy dissipation capacity of the semi-active damper over
the passive optimal damper, an approximate solution to the nonlinear dynamic problem was obtained using
the method of averaging and a time integration based method was proposed. The key observations of the
CPOC are as follows:
(1)
 The CPOC allows to improve the energy dissipated per cycle by the semi-active damper over the optimal
passive damper for the entire span of frequency ratio considered (except at r ¼ 1 where there is no room
for improvement).
(2)
 The CPOC yields a control effort that is periodic at twice the frequency of the excitation, which is coherent
with the paper presented by Anusonti-Inthra and Gandhi [4].
The main originality of this paper is then to ‘‘improve’’, or ‘‘fine tune’’, the result obtained from the clipped
optimal control approach in order to obtain an ‘‘improved clipped periodic optimal control’’ (or ICPOC).
This is done using the same control law as the CPOC but varying the requested effort signal which is no longer
constrained to its active optimal form. The new parameters for the requested effort are found using the
approximate solution to the CPOC problem and an appropriate optimization algorithm. The main findings
resulting from the ICPOC are:
(1)
 The ICPOC offers increased performance over the CPOC for the entire span of frequency considered (or
equal at r ¼ 1).
(2)
 The new approach developed allows to implicitly take into account the modulation capacity of the semi-
active damper in the determination of the control parameters as opposed to the clipped optimal control
approach, which is independent of the modulation capacity of the semi-active damper.
(3)
 As the frequency ratio gets away from resonance, the ICPOC takes the form of a Bang–Bang (or On–Off)
control, which is coherent with the large amount of attention that this variety of control has received for
semi-active vibration control [20].
Overall, it was shown that considerable gains can be made by using the approach presented in this paper over
the already established clipped optimal control approach.

6.1. Future work

The approach developed in this paper opens up many opportunities for future research. For example,
interesting insights could be obtained by using the approach to synthesize an effective control law for the semi-
active vibration isolation problem. Also, the results presented in this paper suggested that, as r gets away from
resonance, a Bang–Bang (or On–Off) control logic could give similar performance to the ICPOC. This aspect
should be analyzed more thoroughly because of the relative simplicity that a Bang–Bang control law offers for
practical implementation.
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